Big challenges There have been two major issues on the advancement of robotic prostheses: 1) how to firmly attach an artificial limb to the human body; 2) how to intuitively and efficiently control the prosthesis in order to be truly useful and regain lost functionality.“This technology solves both these problems by combining a bone anchored prosthesis with implanted electrodes,” said Rickard Brånemark, who along with his team has developed a pioneering implant system called Opra, Osseointegrated Prostheses for the Rehabilitation of Amputees. A titanium screw, so-called osseointegrated implant, is used to anchor the prosthesis directly to the stump, which provides many advantages over a traditionally used socket prosthesis. “It allows complete degree of motion for the patient, fewer skin related problems and a more natural feeling that the prosthesis is part of the body. Overall, it brings better quality of life to people who are amputees,” says Rickard Brånemark. How it works Presently, robotic prostheses rely on electrodes over the skin to pick up the muscles electrical activity to drive few actions by the prosthesis. The problem with this approach is that normally only two functions are regained out of the tens of different movements an able-body is capable of. By using implanted electrodes, more signals can be retrieved, and therefore control of more movements is possible. Furthermore, it is also possible to provide the patient with natural perception, or “feeling”, through neural stimulation. “We believe that implanted electrodes, together with a long-term stable human-machine interface provided by the osseointegrated implant, is a breakthrough that will pave the way for a new era in limb replacement,” says Rickard Brånemark. The patient The first patient has recently been treated with this technology, and the first tests gave excellent results. The patient, a previous user of a robotic hand, reported major difficulties in operating that device in cold and hot environments and interference from shoulder muscles. These issues have now disappeared, thanks to the new system, and the patient has now reported that almost no effort is required to generate control signals. Moreover, tests have shown that more movements may be performed in a coordinated way, and that several movements can be performed simultaneously. “The next step will be to test electrical stimulation of nerves to see if the patient can sense environmental stimuli, that is, get an artificial sensation. The ultimate goal is to make a more natural way to replace a lost limb, to improve the quality of life for people with amputations,” says Rickard Brånemark. source: mynewsdesk.com
Mind-Controlled Artificial Limbs Fusing Man and Machine Coming Next Year By Liat Clark, Wired UK 28-11-12 
A postdoctoral student has developed a technique for implanting thought-controlled robotic arms and their electrodes directly to the bones and nerves of amputees, a move which he is calling “the future of artificial limbs”. The first volunteers will receive their new limbs early in 2013. “The benefits have no precedent,” Max Ortiz Catalan, who carries out research in biomedicine and artificial intelligence at the Chalmers University of Technology in Sweden, told Wired.co.uk. “They will be able to simultaneously control several joints and motions, as well as to receive direct neural feedback on their actions. These features are today not available for patients outside research labs. Our aim is to change that.” Ordinary myoelectric prostheses work by placing electrodes over the skin to pick up nerve signals that would ordinarily be sent by the brain to the limb. An algorithm then translates these signals, and sends instructions to motors within the electronic limb. Since the electrodes are applied to the skin surface, however, they will undoubtedly encounter countless issues in maintaining the fluid transferal of information back and forth between the brain and the limb. By implanting those electrodes directly to the patient’s nerves, Catalan is hoping to get one step closer than anyone else to replicating natural movement. “Our technology helps amputees to control an artificial limb, in much the same way as their own biological hand or arm, via the person’s own nerves and remaining muscles,” he said. Using the Osseointegrated Prosthesis for the Rehabilitation of Amputees (OPRA) method developed by Rickard Brånemark at Sahlgrenska University Hospital in Gothenburg, Catalan and his team plan to forgo traditional sockets in place of bone-anchored prostheses attached via titanium screws. It was a method inspired by Brånemark’s father, who was the first to discover that titanium can fuse with bone tissue. “The operation will consist of placing neural and muscular electrodes on the patient’s stumps, as well as placing the bidirectional interfaces into the human body.” A titanium implant acts as the bidirectional interface, transmitting signals from the electrodes, placed on nerves and muscles, to the limb. It is a truer replication of how the arm was designed to work, with information from existing nerves being transferred to the limb and to the implant, where algorithms can translate thought-controlled instructions into movement. It is, Catalan told Wired.co.uk, a “closed loop control” that moves us “one step further to providing natural control of the artificial limb”. Add to this the fact that every finger is motorised and can be individually controlled, and Catalan’s bold statement might just be accurate. The first surgeries, due to be carried out by Brånemark in January or February 2013, will all be on patients that had limbs amputated several years prior. Asked whether or not this will make success harder, Catalan said it was one question they are looking to answer. “The possibilities are higher in recent amputation. Our first patients however, have been amputated for several years. This project aims to answer several very interesting scientific questions in neurorehabilitation.” In preparation, for both the amputees’ learning and the algorithm’s, Catalan has been training his subjects in the lab using virtual reality simulations. “It provides real-time feedback to the patients on their performance executing different motions. It is definitely very important for them to re-learn some motions, and for us to quantitatively qualify our algorithms’ performance.”
|